Dr. Rosaria Orlandi - CURRICULUM VITAE

Educational Background

2003-2004

Master in Bioinformatics, University of Torino - Fondazione per le Biotecnologie

1997-1998

School of Management of Technology, University of Milan

1992-95

School of Applied Genetics (Cytogenetics and Molecular Genetics), University of Milan

1977-1981

Ph.D. Degree in Biology, University of Milan

Professional Experience

1991-to date

Dirigente Sanitario Biologo

Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori (INT),

Milan, Italy

1989-1991

Research Associate

Division of Experimental Oncology, Istituto Nazionale Tumori (INT), Milan, Italy

1987-1988

Post-Doctoratal Fellowship

Laboratory of Dr G. Winter, Medical Research Council, Cambridge (UK)

1982-1986

Post-Doctoratal Fellowship

Division of Experimental Oncology, INT, Milan, Italy

1979-1981

Student Apprenticeship

Institute of Biochemistry, Faculty of Biology, University of Milan

Scientific Research

Development of murine and engineered monoclonal antibodies (MAbs) for cancer immunodiagnosis and immunotherapy

- development of the cloning strategy for immunoglobulin variable domains by polymerase chain reaction (Orlandi et al., PNAS 1989);
- production and characterization of murine and chimaeric MAbs;
- generation of immunoconjugates using MAbs and toxins and analysis of their activity in vitro and in vivo.

Structural and functional analysis of molecular targets of therapeutic MAbs

- biochemical analysis of glycoproteins and glycolipids identified by Mabs and differentially expressed on tumor cells;
- studies on expression of proto-oncogenes and oncogenes in cellular models;
- epitope mapping of complex epitopes on p185 HER2 oncoprotein
- studies on cellular function and involvement in cancer progression of the novel human gene Sel1L.

Development of Peptide Phage Display in HER2 models

- Selection of phage-displayed peptide libraries using anti HER2 MAbs for identification of tumor-antigen mimics (Orlandi et al., Europ Journal of Immunol 1994)
- Engineering of a phage-displayed peptide with specific binding to HER2 receptor for targeted gene transduction of mammalian cells (Urbanelli et al., J.Mol.Biol.2001)

Cancer Biomarker Discovery

 Identification by Mass Spectrometry of complement component C3adesArg and a Cterminal-truncated form as candidate breast cancer serum biomarkers Identified (Li et al, Clinical Chemistry 2005)

- Identification of hepcidin and ferritin ligh chain blood levels as potential diagnostic marker for breast cancer (Orlandi et al. Ann Oncol. 2013) and studies on iron-related molecules in cancer plasma and tissues (Ciniselli et al., 2016; Pizzamiglio et al., 2017).
- Discovery of potential early diagnosis biomarkers analysis in plasma samples of breast cancer patients (AIRC 5x Mille "Tumor-Microenvironment related changes as new tools for early detection and assessment of high-risk disease" (Giussani et al., Cancers (Basel) 2021)
- Profiling of plasma cytokines and blood immune cells in breast cancer patients for pathological complete response prediction (FP7 IMMUNOCAN. Miceli et al., Clinical Breast Cancer, 2022).

Functional genomics

- Studies on expression profile of Extra Cellular Matrix (ECM) genes and identification of ECM signatures in breast cancer (Bergamaschi et al, J Pathol. 2008; Triulzi at al. PlosOne 2013; Triulzi et al, Clinical Cancer Res 2014, Sangaletti et al., 2016 Cell Rep; Giussani et al., J Cell Physiol. 2018, Mercatelli et al., J Biophotonics. 2020).
- Comparative analysis of gene and miRNA expression of breast cancer from Chinese and Italian patients (Huang et al, Cancer Medicine, 2015; Dugo et al., Breast 2018)

Application of breath analysis to cancer detection

- Studies on human breath analysis for identification of volatile signatures in breast cancer (Martinez-Lozano Sinues, J. of Breath Research, 2015).
- Generation of statistical bioinformatics pipelines for analysis of Mass Spectrometry data in clinical context, using spectra data (Cristoni et al, Rapid Commun Mass Spectrom. 2009) and matrix data (Martinez-Lozano Sinues, J. of Breath Research, 2015)

Technological Development in Clinical Breath Analysis

- Development of technology and instruments for collection and storage of human breath samples for clinical purposes (**PCT/IB2019/056152**).
- Development of dedicated artificial intelligence- based computational tools for breathomics data and for oncology clinical practice (under construction).