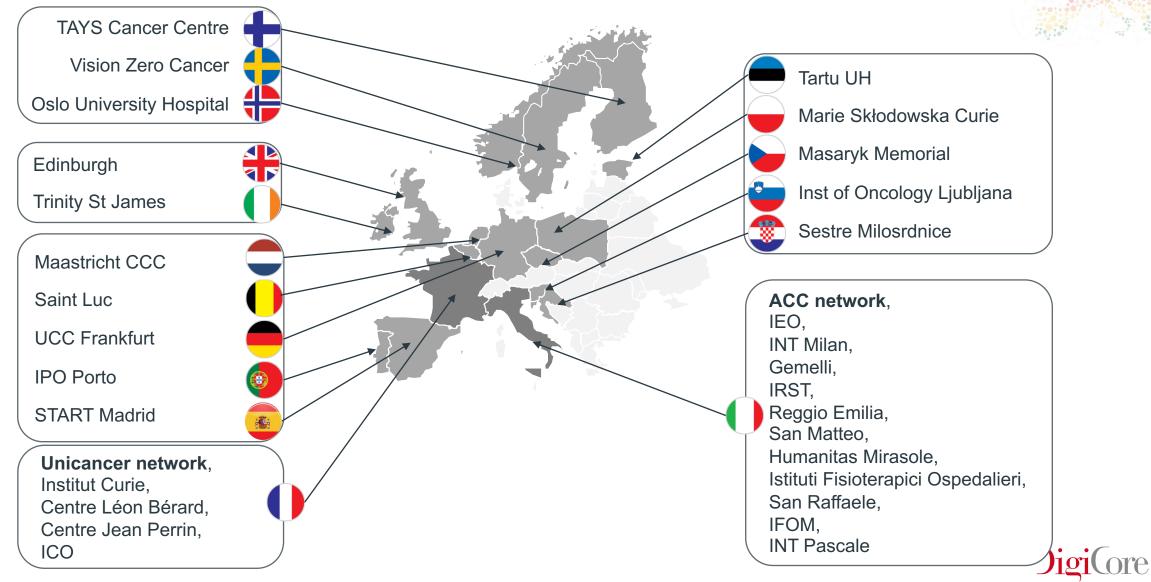

DIGI-ONE: going digital and federated, to impact cancer care

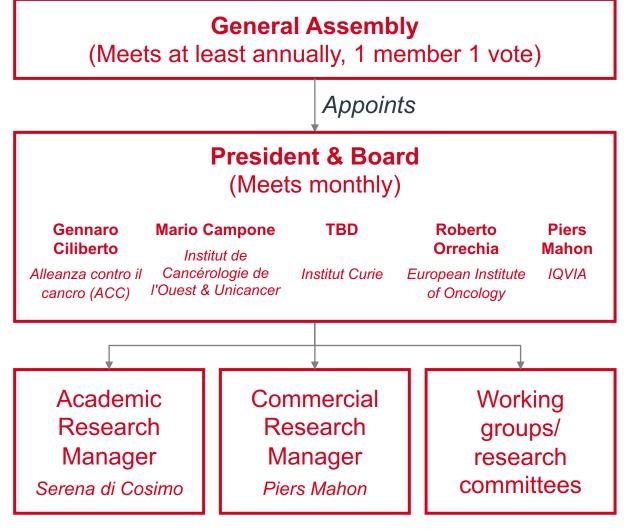
Dr. Alberto Traverso Faculty of Medicine, University Salute Vita San Raffaele Academy manager DIGICORE

traverso.alberto@unisr.it



DIGICORE is a new collaboration that aims to transform and digitise cancer outcome research in Europe

1


Current DIGICORE network of 34 centres and 2 national networks in 16 countries. More welcome to join

The Digital Institute for Cancer Outcomes Research

* https://www.digicore-cancer.eu/Page.aspx?name=CONN WIN 22

DIGIOCRE foundational legal statutes built strong governance and protections for cancer centres (= air traffic control)

* For more detail see: OECI Magazine (December 2020)

- 1. Medical hypothesis neutrality no large pharma inside, Surgery & Radio matter
- 2. Cancer centres retain full data control and autonomy over clinical decisions
- 3. Serve both academic and commercial research (later at Fair Market Value)
- **4. Institutional research autonomy** right to refuse any study, or propose one
- 5. Equality in research activity of Associate members and Members
- 6. Technical solutions will be **federated**, include a **common data model** but do not have to implemented until / unless funded

JINNIG

DIGICORE is building a federated ecosystem for Precision Oncology Real World Evidence

Objectives

- 1. Define a scalable common international minimum dataset for cancer, building from French OSIRIS
- Achieve interoperability and high data quality on that dataset between 6 centres across Europe under GDPR
- **3. Federate those centres** to allow aggregated statistics like counts and to answer simple research questions, with appropriate information governance and contracting
- 4. Link routine molecular and clinical data (despite the format challenges on molecular PDFs)
- 5. Demonstrate commercial real world evidence possible in a broader range of European countries than today
- 6. Work out how to scale up digitally less mature hospitals with a variety of technologies and vendors in DIGICORE's learning by- doing community

Data sharing : a necessity inherent to cancer disease

"The molecular uniqueness of each cancer and the number of genetic variants present in an individual's genome makes precision oncology not only challenging from a clinical and biological perspective but also from a computational perspective".

NhanDo et al. Seminars in Oncology 2019

« The real value of genomic data will be realized only when they are linked to high-quality, longitudinal, computationally amenable clinical information, allowing researchers to identify precise genotype phenotype associations.

If we don't concentrate our efforts (and dedicate substantial resources) to robustly improve data sharing, we risk undermining precision oncology's capacity to deliver substantive advances for people with cancer ». *NEJM*, May 2017

OSIRIS overview

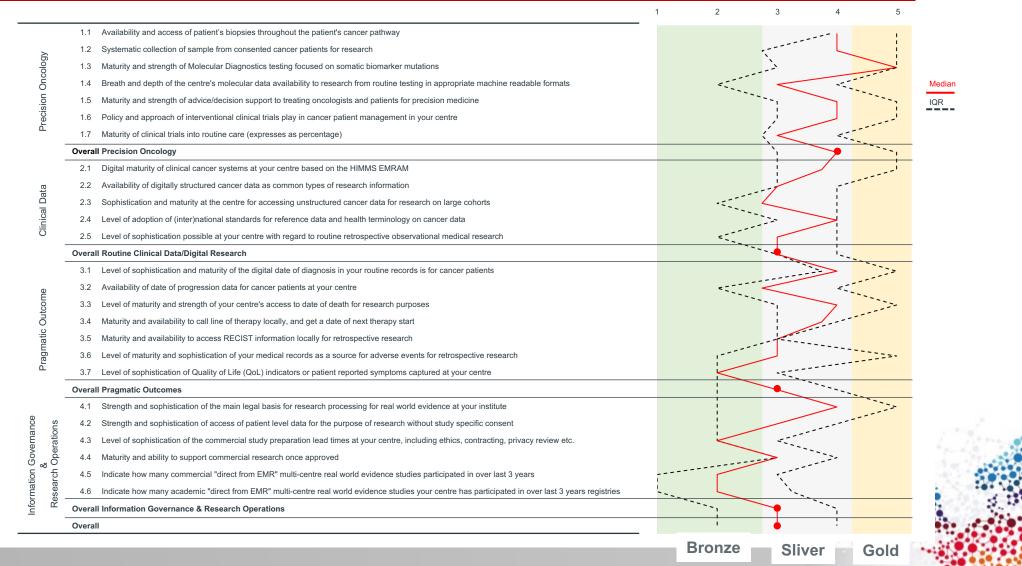
- First stable release version 1.1 (6 septembre 2018)
 - 67 clinical items (13 objects)
 - 62 omics items (10 objects)
 - Over 40 value sets
- Mapping with international standards
 - FHIR
 - UMLS
 - LOINC
 - ICD-10
 - ICD-O-3 (Topo/Morpho)
 - ATC
 - MedDRA/CTCAE
 - TNM
 - RECIST
 - HGVS
 - •

OSIRIS : why we need common data models?

- To accelerate data sharing between health institutes
- To allow translational studies on large datasets
- To support clinical studies as well as real world data studies
- To provide qualitative datasets for Open Data and AI approaches

Current selection for essential/important data items for the pilot

Patient Registration &	Clinical Diagnosis &	Biomarkers &	Omics Items		
Consent	Clinical Phenotype	sample source	(Entire data set, LIMS)	Treatment	Outcomes & Side effects
Birth date	TBD: Confirmation of diagnosis type / method)	Biomarker type name (code),	Alteration in Sample; Variant	Treatment type	Date of death & cause
(data item 3.1)	(data items 10.1)	(data items 13.1, 13.2)		(data item 11.1)	(data item 4.3 & 4.4)
Gender	Date of diagnosis	Biomarker measure		Treatment start & end dates	Date of last follow-up
(data item 3.2)	(data item 10.2)	(data items 13.3)		(data item 11.5, 11.6)	(data item 4.2)
Local Patient ID	ECOG/Karnofsky / G8 /OMS performance status	Biological sample identifier and date		Clinical trial (y/n)	Presence / absence of metastasis
(data item 2.1)	(data items 9.1, 9.2, 9.3)	(data items 14.1, 14.3)		(data item 11.7)	(data item 7.3)
Healthcare centre identifier	Comorbidity			Name of clinical trial	Disease progression
(data item 2.2)	(date item 5.1)			(data item 11.8)	(data items 8.1, 8.2, 8.3)
Consent date & auth. for genetic analysis	TNM type, stage, version			Name & ATC code of administered molecule	
(item 1.1 & 1.2)	(data items 7.4, 7.5, 7.6)			(data item 11.2, 11.3)	
Add: Weight & Height/dates	Histological / morphological type, stage & grade)	Add: Lab measures in std biochem.on organ fitness (23 already included)			TBD: Vital status
	(data items 7.7, 7.8, 7.9)				(data item 4.1)


Red: To be Discussed/Surveyed

)igi(ore

25

Range of digital maturities in our community

Decision 2: How do we "walk before we run" and build up our skill?

Observations

We need to "walk before we can run" so need a simple study first.

A good simple first study would have these features:

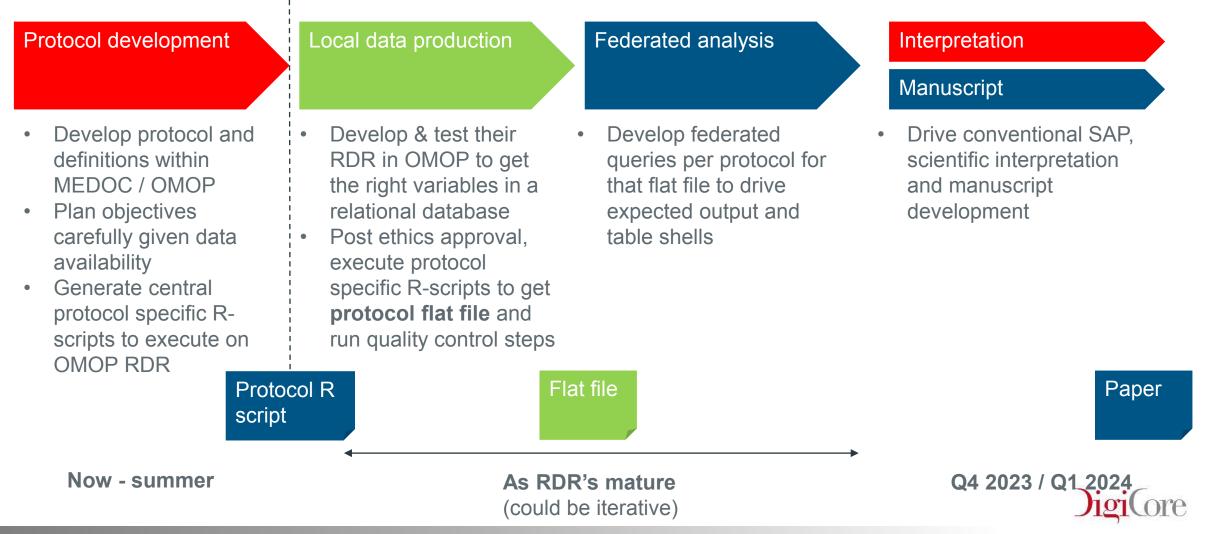
- Get proof of output via federation,
- Uses structured data that is easy to harmonise in OMOP format,
- All 6 centres willing to run it and easy for others to join

The more interesting studies like disease natural history will need more technology such as NLP (and manual quality control), but there is more risk and complexity

For discussion

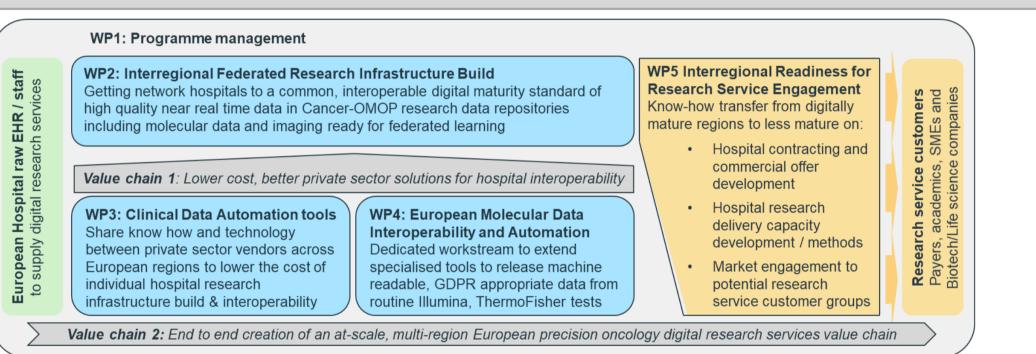
• Which is the best place to start: Dx volumes in Covid19 or benchmarking access to innovation?

- Is there a way to make a **repeatable model** to build a Cancer OMOP solution in a given cancer?
 - Simple study
 - Medium study
 - Disease natural history
- We then use that model in every cancer


Decision 2: Is there a better step-wise sequence than this to manage risk?

The model for a cancer e.g. NSCLC

	Covid19 Impact	Benchmarking Access To INnovation	Federated Advanced Prognostics	Disease Natural history with care quality assessment		
Acronym	C19	BATIN	FEDAPT	DINASTY		
Description	Examine changes in diagnostic patterns and time to treatment during C19	Examine whether access to new drugs, tests or procedures varies by ECOG, sex or age	Large scale federated learning to predict 2-year survival	Natural history and treatment outcomes studies with care quality assessment		
Data concepts covered	 5 to 10 Demographics, ICD10, stage and time to Tx 	15Treatments, procedures	15 to 20Clinical phenotype	 All of MEDOC, including biomarkers 		
Coverage	Solid cancer diagnosis (excl. haem and skin)	NSCLC, HER2- Breast, EOC				
Complexity	Very simple	Simple	Moderate	Hard		


These three types of contributors will be involved in the process in this way

Ethics Committee submission

Work plan

Provide a brief description of the overall structure of the work plan (list of work packages or graphical presentation (Pert chart or similar)).

